

Manipulation of Silage Fermentation for Animal Health

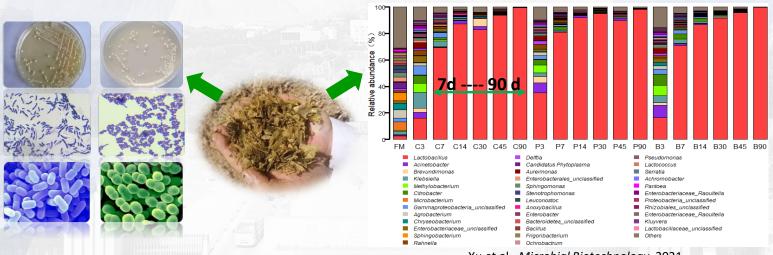
Xusheng Guo guoxsh07@lzu.edu.cn

Probiotics and Bio-Feed Research Center, Lanzhou University; School of Life Sciences, Lanzhou University, China.

July 21, 2025

Importance of silage to animal husbandry

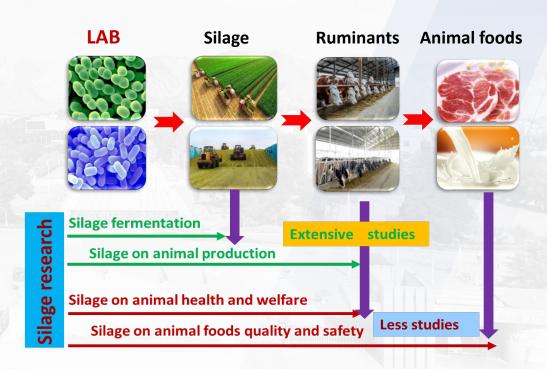
- ◆ Silage accounts for more than 50% of dairy cow ration.
- ◆ There are about 240 million dairy cattle, 1 billion beef cattle worldwide (FAO, 2022).
- Consuming about 7.4 billion tons of silage per year.



Importance of lactic acid bacteria to silage

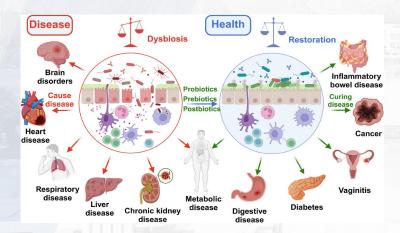
- □ Lactic acid bacteria (LAB) is the major fermenter of ensiled forages;
- After 7 d fermentation, LAB accounts for 68% of total bacteria in naturally fermented corn silage;
- After 90 d fermentation, LAB accounts for 98% of total bacteria in corn silage.

Xu et al., Microbial Biotechnology, 2021.


Importance of inoculating LAB at ensiling to animal production system

Advances of Silage Research

- Inoculants on silage fermentation
- □ / Inoculants on animal production
- Inoculants on animal health and welfare!
- Inoculants on animal foods quality and safety!



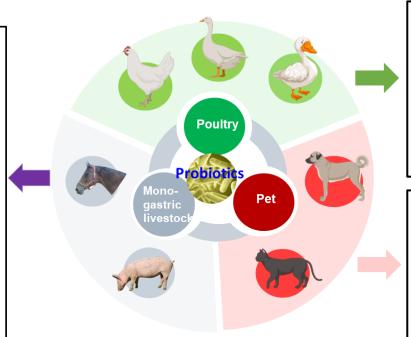
Importance of lactic acid bacteria to health

- □ LAB is not only a **fermenter** but also one of the important **probiotics**
- LAB is beneficial to human health and has been widely used in clinical diseases

Tremendous studies have confirmed that LAB can be used to ameliorate clinical diseases via restoration of gut microbiota (Jenny Tschiesche, Gut health and Probiotics, 2018).

Direct-fed probiotics for improving mono-gastric animal health

Probiotics:


- E. faecalis
- E. faecium

Bacillus cereus

- B. subtilis
- B. licheniformis
- L. reuteri
- L. Acidophilus

Effects to animal health:

- ➤ Mortality reduction
- > Increase immunity
- > Improve gut health
- > Reduction of diarrhea
- > Decrease in stress
- > Avoid hindgut disorders

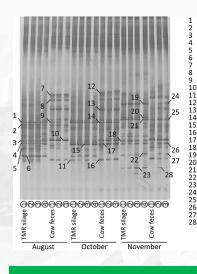
Probiotics:

- L. animalis L. fermentum
- L. salivarius L. acidophilus
- S. faecium L. reuteri
- E. faecium S. cerevisiae

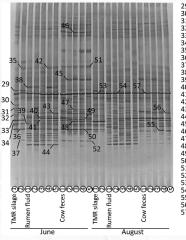
Effects to animal health:

- ➤ Mortality reduction
- > Increase immune response
- > Improve gut health

Probiotics:


- E. hirae E. faecium
- L. reuteri L. rhamnosus
- L. plantarum W. cibaria
- L. acidophilus B. subtilis

Effects to animal health:


- > Clinical recovery
- > Increase immune function
- > Improve gut health
- > Decrease in diarrhea rate

- Unlike mono-gastric animals, ruminants consuming silage containing plenty lactic acid bacteria everyday!
- Silage can be an vehicle to deliver probiotics to the hindgut of ruminants.

Lactobacillus acetotolerans Lactobacillus parafarraginis Pediococcus acidilactici Lactobacillus buchneri Lactobacillus acetotolerans Pediococcus ethanolidurans Weissella cibaria Lactobacillus murinus Lactobacillus acetotolerans Lactobacillus reuteri Lactobacillus acidipiscis Lactobacillus plantarum Lactobacillus johnsonii Lactobacillus acetotolerans Lactobacillus buchneri Lactobacillus plantarum Lactobacillus murinus Pediococcus acidilactici Lactobacillus suebicus Weissella paramesenteroides Lactobacillus helveticus Lactobacillus casei Weissella paramesenteroides Lactobacillus suebicus Lactobacillus reuteri Lactobacillus murinus Lactobacillus casei Lactobacillus iohnsonii

- Lactobacillus pontis Lactobacillus amvlolyticus Lactobacillus pontis Lactobacillus pontis Lactobacillus pontis Lactobacillus reuteri Lactobacillus plantarum Weissella paramesenteroides Lactobacillus acetotolerans Uncultured bacterium Uncultured bacterium Lactobacillus ruminis Uncultured bacterium Lactobacillus plantarum Uncultured bacterium Lactobacillus ruminis Lactobacillus acetotolerans Uncultured bacterium Lactobacillus fructivorans Lactobacillus pontis Lactobacillus ruminis Lactobacillus reuteri Uncultured bacterium Lactobacillus ruminis Lactobacillus acetotolerans Lactobacillus acetotolerans Uncultured bacterium Lactobacillus pontis Lactobacillus acetotolerans
- A total of 14 LAB species were detected in the TMR silage samples, of which 5 (L. acetotolerans, L. pontis, L. casei, L. suebicus, and L. plantarum) were detected in the dairy cow feces.

Although the gut LAB community is robust and not easily affected by the silage conditions, several LAB species can inhabit both silage and feces, which suggests the potential of using silage as a vehicle for conveying probiotics (Han H, et al. J Dairy Sci. 2014).

Contaminants in silage endangering animal health

Mycotoxins

Pathogenic secondary metabolites mainly biosynthesized by filamentous fungi.

Pesticides

Toxic substance used to kill pest and control plant disease that cause damage to crop.

Feed intake
Milk yield
Reproductive system
Immunosuppression

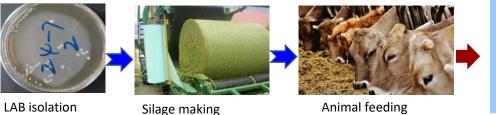
Neurological disorder Cancer Birth defect Endocrine system Neurological disorder Cancer Birth defect Endocrine system Reproduction Immunity Feed intake Antioxidant system

Antibiotic resistance genes (ARGs)

Antibiotics created microbial ARG selection pressures, inducing ARG emergence and spreading.

Heavy metals and other toxins

- Heavy metals: Cr, Pb, Cd, As, Hg.
- Other toxic compounds



Manipulation of silage fermentation: Prospects and opportunities

There are great opportunities to:

- □ Develop novel LAB inoculants to manipulate silage fermentation for making functional or probiotic silage with health beneficial properties
- □ Develop novel LAB inoculants to manipulate silage fermentation for mitigating hazardous substances in silage

To improve:

- Animal production
- Animal food quality and safety
- Animal health

Manipulation of silage fermentation by specific LAB strains to produce functional silage for animal health

Current research work from our group:

- Probiotic-derived antioxidative silage
- □ Probiotic-derived anti-inflammatory silage

Probiotic-derived antioxidative silage for animal health

- Antioxidants additives have been widely used in animal production
- > Certain LAB strains exhibit robust redox regulatory capabilities, have high antioxidant activities

Application of antioxidant-rich LAB to improve silage antioxidant activity

Animal Feed Science and Technology 268 (2020) 114614

Contents lists available at ScienceDirect

Animal Feed Science and Technology

journal homepage: www.elsevier.com/locate/anifeedsci

Animal Feed Science and Technology 272 (2021) 114751

Contents lists available at ScienceDirect

Animal Feed Science and Technology

journal homepage: www.elsevier.com/locate/anifeedsci

The effect of *Pediococcus acidilactici* J17 with high-antioxidant activity on antioxidant, α -tocopherol, β -carotene, fatty acids, and fermentation profiles of alfalfa silage ensiled at two different dry matter contents

^a State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China ^b Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China

Antioxidant status, chemical composition and fermentation profile of alfalfa silage ensiled at two dry matter contents with a novel Lactobacillus plantarum strain with high-antioxidant activity

Y.X. Zhang^{a,1}, W.C. Ke^a, D. Vyas^b, A.T. Adesogan^b, M. Franco^c, F.H. Li^a, J. Bai^a, X. S. Guo a, *

a State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China

Zhang et al., Anim Feed Sci Technol., 2021.

State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China

b Department of Animal Sciences, University of Florida, Gainesville, 32611, United States c Natural Resources Institute Finland (Luke), Jokioinen 31600, Finland

L. plantarum 24-7 with highantioxidant activity

Items	Lp. 24-7	Lp. BX62	Reference Strain
Survival rate at 2 mmol/LH ₂ O ₂	1.53 ^a	1.50 ^b	0.148 ^c
Fermentation supernatant			
antioxidant activity			
DPPH, %	87.12 ^a	87.76 ^a	69.14 ^b
·OH, %	62.90 ^a	61.86 ^b	41.26°
$0_2^-, \%$	25.40 ^b	27.70 ^a	11.64 ^c
T-AOC, U/mL	31.08 ^a	31.63 ^a	24.91 ^b
SOD, U/mL	65.49 ^a	66.67 ^a	47.10 ^b
GSH-Px, U/mL	ND	ND	ND
CAT, U/mL	ND	ND	ND

Journal of Animal Science and Biotechnology https://doi.org/10.1186/s40104-023-00977-3 Journal of Animal Science and Biotechnology

RESEARCH

Open Access

Effects of antioxidant-rich Lactiplantibacillus plantarum inoculated alfalfa silage on rumen fermentation, antioxidant and immunity status, and mammary gland gene expression in dairy goats

Yixin Zhang^{1,2,3}, Samaila Usman^{1,2,3}, Qiang Li^{1,2,3}, Fuhou Li^{2,3}, Xia Zhang^{2,3}, Luiz Gustavo Nussio⁴ and Xusheng Guo 1,2,3* ©

Ensiling trials

Feeding trial

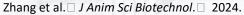


Table 1. Fermentation characteristic and antioxidant capacity of ensiled alfalfa

	Ttrea	tment	<u>_</u>	
Item	Reference Strain		SEM	P-value
Fermentation characteristic				
рН	4.62	4.63	0.008	0.832
Lactic acid, g/kg DM	42.3	43.2	0.33	0.189
Acetic acid, g/kg DM	17.6	18.5	0.13	0.005
Propionic acid, g/kg DM	5.38	4.66	0.091	0.003
Antioxidant capacity				
α-tocopherol, mg/kg DM	19.9	26.3	0.76	0.002
β-carotene, mg/kg DM	159	209	5.3	0.001
T-AOC, mmol/kg FW	7.58	9.26	0.093	< 0.001
SOD, U/g FW	785	659	11.7	< 0.001
GSH-Px, U/g FW	438	488	5.1	0.001
CAT, U/g FW	0.00	9.80	0.218	< 0.001

Note: T-AOC, total antioxidant capacity; SOD, superoxide dismutase; GSH-Px, glutathione peroxidase; CAT, catalase.

Table 2. Effect of diets on milk production and quality in dairy goats

	Dietary trea	tment			
Items	Reference strain Lp. 24-7		— SEM	P-value	
DMI, kg/d	0.811	0.778	0.043	0.717	
Milk production					
Milk yield, kg/d	1.41	1.39	0.048	0.900	
3.5% FCM, kg/d	1.36	1.42	0.014	0.058	
3.5% FCM/DMI	1.67	1.83	0.024	0.006	
Fat, g/d	46.4	50.3	0.85	0.040	
Casein, g/d	39.7	47.3	1.31	0.011	
Milk components					
Fat, %	3.30	3.60	0.061	0.024	
Protein, %	3.76	4.14	0.113	0.115	
Lactose, %	4.48	4.41	0.046	0.441	
Casein, %	2.83	3.39	0.093	0.008	
TS, %	11.5	12.3	0.17	0.035	
SNF, %	8.97	9.62	0.139	0.035	
Vitamin A, ug/100g	597	712	11.1	< 0.001	

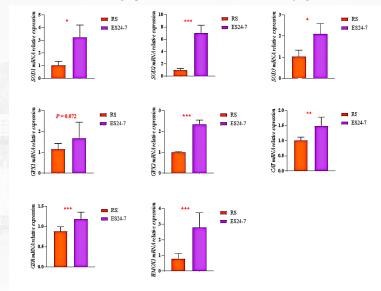
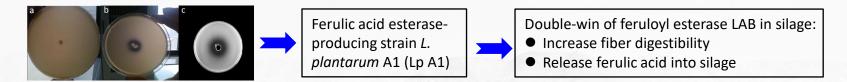


Table 3. Whey and serum antioxidant capacities of dairy goats

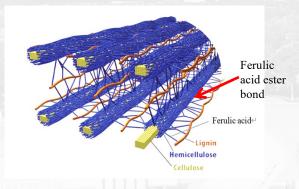
	Dietary	treatment			
Items	Reference Lp. 24-7		- SEM	P-value	
Whey antioxidant					
T-AOC, mM	0.087	0.091	0.006	0.786	
SOD, U/mL	14.4	23.9	0.36	< 0.001	
GSH-Px, U/mL	0.00	22.6	0.54	< 0.001	
CAT, U/mL	0.131	0.602	0.052	0.005	
Serum antioxidant					
T-AOC, mM	0.21	0.30	0.007	< 0.001	
SOD, U/mL	62.7	95.2	1.73	< 0.001	
GSH-Px, U/mL	102	190	2.5	< 0.001	
CAT, U/mL	3.47	7.53	0.215	< 0.001	

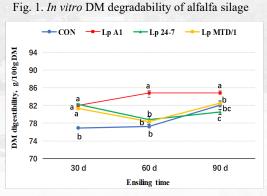
Note: T-AOC, total antioxidant capacity; SOD, superoxide dismutase; GSH-Px, glutathione peroxidase; CAT, catalase.

Fig. 1 Relative expression of antioxidant-related genes in the **mammary gland** sampled from dairy goats



Feeding dairy goats with antioxidant-rich L. plantarum inoculated alfalfa silage:


- 1) increased the antioxidant status in milk and serum
- 2) Increased the expression of antioxidant-related genes in the mammary gland


Application of ferulic acid esterase-producing LAB to improve silage antioxidant activity

Ferulic acid has strong antioxidant activity

Lignocellulose structure

CON Lp A1 Lp 24-7 Lp MTD/1 7000 T: P < 0.001D: P < 0.001Ferulic acid, mg/kg DM 6500 $T \times D: P < 0.001$ 6000 SEM = 55.75500 5000 4500 4000 7 14 30 Ensiling time, d

Fig. 2. Ferulic acid concentration in alfalfa silage

Ensiling trial

Feeding trial

Table 1. Chemical composition, ensiling characteristics and antioxidase activity of alfalfa silage \square 90 d \square

T4	Silage tre	eatment	CEM	P-value	
Items	Control	Lp A1	SEM	P-value	
Chemical composition					
DM, g/kg FW	450	452	0.613	0.093	
CP, g/kg DM	167	169	1.845	0.426	
aNDF, g/kg DM	453	430	6.653	0.078	
ADF, g/kg DM	345	328	5.407	0.135	
Ferulic acid, g/kg DM	4.61	5.19	0.094	< 0.001	
Fermentative characteristics					
pH	4.67	4.54	0.021	< 0.001	
Lactic acid, g/kg DM	70.5	88.2	3.207	0.001	
Antioxidase activity					
T-AOC, U/g FM	158	181	5.626	0.035	
SOD, U/g FM	617	636	4.884	0.048	
GSH-Px, U/g FM	788	839	9.236	0.002	

Table 2. Intake and apparent digestibility of dairy goats fed diets including alfalfa silage inoculated with *L. plantarum* A1

Tanna	Treatment diet		- SEM	
Items -	Control	Lp A1	SEM	P-value
Total intake, g/d	T. OTT.	The second second	10	
DM	1370	1381	4.059	0.213
OM	1263	1271	3.707	0.285
CP	247	250	1.837	0.396
aNDF	467	452	2.175	< 0.001
ADF	310	298	1.615	< 0.001
Apparent digestibility, %				
DM	60.1	63.7	0.486	< 0.001
OM	62.3	65.6	0.459	< 0.001
CP	70.3	72.9	0.56	0.013
aNDF	37.8	39.0	1.034	0.582
ADF	32.3	32.5	1.105	0.921

Table 3. Ruminal fermentation parameters in dairy goats fed diets including alfalfa silage inoculated with *L. plantarum* A1

Items	Treatme	ent diet	• SEM	P-value
items	Control	Lp A1	SEM	P-value
pН	6.42	6.36	0.025	0.329
VFA concentration, mM				
Total VFA	45.1	63.8	2.828	< 0.001
Acetate	31.4	46.4	2.249	< 0.001
Propionate	6.14	8.76	0.436	0.001
Butyrate	5.19	5.89	0.358	0.342
Valerate	0.39	0.47	0.025	0.146
Isobutyrate	0.83	0.97	0.035	0.048
Isovalerate	1.13	1.30	0.050	0.103
Total BCVFA	1.97	2.27	0.083	0.070
VFA composition, % M				
Acetate	69.7	72.6	0.637	0.021
Propionate	13.5	13.8	0.442	0.719
Butyrate	11.5	9.22	0.528	0.029
Acetate/Propionate	5.27	5.34	0.185	0.850

Contents lists available at ScienceDirect

Animal Nutrition

Original Research Article

Probiotic effect of ferulic acid esterase-producing *Lactobacillus plantarum* inoculated alfalfa silage on digestion, antioxidant, and immunity status of lactating dairy goats

Fuhou Li ^{a, b}, Baibing Zhang ^{a, b}, Yixin Zhang ^{a, b}, Xia Zhang ^{a, b}, Samaila Usman ^a, Zitong Ding ^{a, b}, Lizhuang Hao ^c, Xusheng Guo ^{a, b, *}

Table 4. Serum and whey antioxidase activity from dairy goats fed diets including alfalfa silage inoculated with *L. plantarum* A1

Items	Treatm	ent diet	- SEM	P-value
items	Control	Lp A1	SEM	P-value
Serum, U/mL				
T-AOC	11.6	13.7	0.362	0.040
SOD	96.3	120	8.323	0.007
GSH-Px	723	791	12.18	< 0.001
CAT	4.14	5.03	0.496	0.032
Whey, U/mL				
T-AOC	6.80	7.98	0.645	0.443
SOD	107	118	7.437	0.386
GSH-Px	167	214	9.603	0.021
CAT	4.31	4.70	0.322	0.275

Note: T-AOC, total antioxidant capacity; SOD, superoxide dismutase; GSH-Px, glutathione peroxidase; CAT, catalase.

Table 5. Milk yield and milk composition of dairy goats fed diets including alfalfa silage inoculated with *L. plantarum* A1

	Treat	ment	CEM	
Items -	Control	Lp A1	- SEM	P-value
Yields, g/d		E 6/	Total Control	
Milk, kg/d	0.74	0.78	0.030	0.565
Fat	32.5	33.4	0.611	0.106
Protein	33.5	36.4	0.102	0.021
Lactose	33.4	35.0	0.398	0.246
Total solids	100	109	1.495	0.027
Composition, g/100g				
Fat	4.19	4.35	0.035	0.041
Protein	4.51	4.67	0.036	0.046
Lactose	4.49	4.50	0.099	0.955
Total solids	13.5	13.9	0.036	0.039
Milk free fatty acid, mevk/L	0.791	0.793	0.064	0.599
Feed efficiency, milk/DMI	0.540	0.565	0.032	0.060

^a State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou. 730000. China

Probiotics and Bological Feed Research Centre, Lanzhou University, Lanzhou, 730000, China Sey Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, The Academy of Animal and Veterinary Sciences, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xuning, 810016, China

Probiotic-derived anti-inflammatory silage for animal health

- Anti-inflammatory effects of probiotics mediate interactions with both intestinal epithelial cells and immune cells.
- Probiotics could also regulate dendritic cells to control the secretion of anti-inflammatory and proinflammatory cytokines, fostering the maintenance of immune homeostasis.

Immunomodulatory of probiotics

Lactiplantibacillus plantarum, Lentilactobacillus buchneri,
Lacticaselbacilus rhamnosus

Intestinal lumen

Mucus layer
Intrestinal edithelium

Dendritic cell

Th1

CDBoa Treg

IL-101

L-22 †

IL-117

Common clinical diseases in dairy cows ☐ mastitis, endometritis, ketosis, footrot *etc*.

- Cows intake silage every day
- Can we manipulate silage fermentation using certain probiotic strains to produce functional silage and prevent or alleviate inflammatory diseases of animals?
- Reduce using of antibiotics in animal production

Our pilot study results in dairy goats

Feeding dairy goats with antioxidant-rich *L. plantarum* 24-7 inoculated alfalfa silage (Zhang et al. ☐ *J Anim Sci Biotechnol.*, 2024)

Fig. 1 Immunoglobulins concentrations in the serum of dairy goats

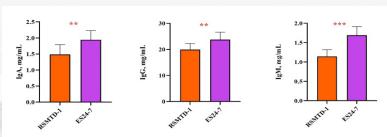
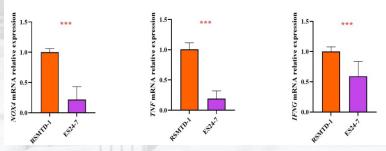
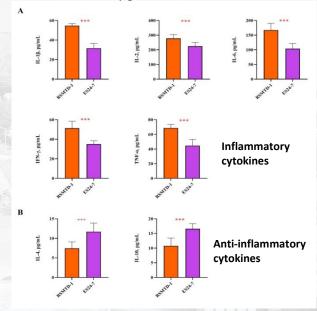
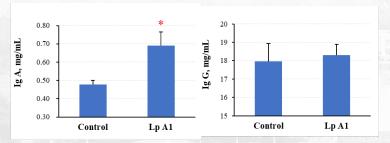
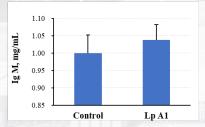




Fig. 3 Relative expression of inflammatory-related genes in the mammary gland sampled from dairy goats

Note□ NOX4, NADPH oxidase 4; TNF, tumor necrosis factor; IFNG, interferon gamma.

Fig. 2 Inflammatory and anti-inflammatory cytokines in the serum of dairy goats


Note \square IL-1 β , interleukin 1 β ; IL-2, interleukin 2; IL-6, interleukin 6; IFN- γ , interferon- γ ; TNF- α , tumor necrosis factor- α ; IL-4, interleukin 4; IL-10, interleukin 10.



□ Feeding dairy goats with feruloyl esterase producing -L. plantarum A1 inoculated alfalfa silage

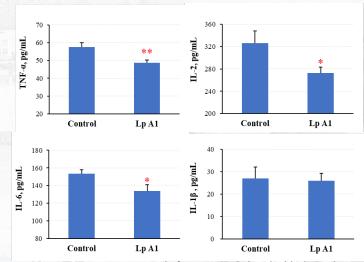

Ferulic acid in alfalfa silage can suppress inflammation (Li et al. ☐ Anim Nutrition., 2022)

Fig. 1. Serum immunoglobulin concentration from dairy goats fed diets including alfalfa silage inoculated with *L. plantarum* A1

Fig. 2. Serum proinflammatory factors concentration from dairy goats fed diets including alfalfa silage inoculated with *L. plantarum* A1

Note: TNF- α , tumor necrosis factor- α ; IL-2, interleukin 2; IL-6, interleukin $6 \square$ IL-1 β , interleukin 1β .

□ Feeding dairy goats with γ-aminobutyric acid-producing *L. buchneri* inoculated alfalfa silage

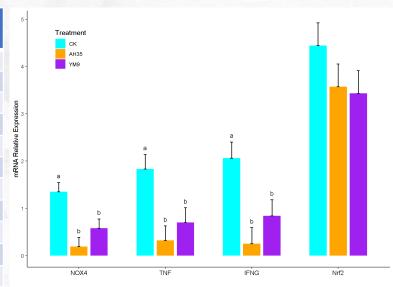

γ-aminobutyric acid(GABA) \square non-protein amino acid \square can alleviate animal stress, and promote feed intake.

Table 1. Milk yield and milk composition of dairy goats fed diets including alfalfa silage inoculated with *L. buchneri*

		Treatments			
Item	Control AH35		YM9	SEM	p-values
DMI, kg/d	1.84ª	1.78 ^b	1.66 ^c	0.010	<0.001
Milk production					
Milk yield, kg/d	0.64 ^a	0.58 ^b	0.64ª	0.016	0.008
Milk yield, g/kg DM	350 ^b	331 ^b	383ª	9.210	<0.001
Fat, g/kg DM	9.78 ^b	12.5 ^a	13.4ª	0.334	<0.001
Protein, g/kg DM	12.5 ^b	14.4 ^a	15.2ª	0.365	<0.001
Lactose, g/kg DM	15.2 ^b	14.9 ^b	17.1 ^a	0.428	0.001
Casein, g/kg DM	10.5 ^b	11.9ª	12.8ª	0.305	<0.001
TS, g/kg DM	39.7 ^c	43.8 ^b	48.0°	1.130	<0.001
SNF, g/kg DM	31.5b	33.2 ^b	36.9a	0.879	<0.001
GABA, μmol/L	114 ^b	111 ^b	152 ^a	3.99	<0.001

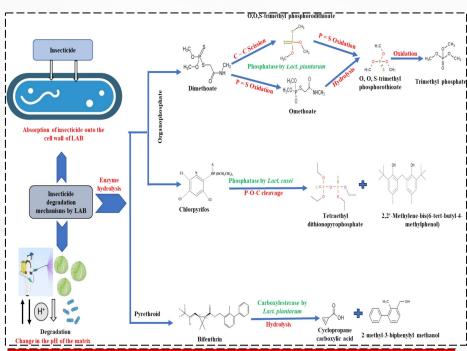
AH35, YM9: γ-aminobutyric acid-producing *L. buchneri* strains

Fig. 1. Mammary gland proinflammatory/oxidant genes expression

Note□ *NOX4*, NADPH oxidase 4; *TNF*, tumor necrosis factor; *IFNG*, interferon gamma.

Mitigating contaminants in silage by inoculating screened LAB

- Bio-control of pesticides in silage
- Bio-control of antibiotic-resistant genes in silage



Bio-control of pesticides in silage

Different LAB inoculants for the degradation of	
pesticides in silage	

	pes	ticides in silage		
LAB strains	Pesticides	IRAC MoA classification	Source	Referenc es
L. plantarum 1.0315,				
L. plantarum 1.0624,	Phorate and chlorpyrifos	Organophosphates 1B	Corn silage	(Zhang et al., 2016)
L. plantarum 1.0622				
<i>L. casei</i> WYS3	Chlorpyrifos	Organophosphates 1B	Rice straw silage	(Wang et al., 2016)
L. pentosus 3–27	Beta- cypermethrin	Pyrethroids 3A	Alfalfa silage	(Liu et al., 2022)

Mechanisms employed by LAB in insecticide residue degradation. (Kiruthika, K., et al. 2025. Probiotics & Antimicro. Prot. 17, 81–102. doi: 10.1007/s12602-024-10298-0.)

Bio-control of the pesticide beta-cypermethrin in silage

(Liu et al., Journal of Hazardous Materials, 2022)

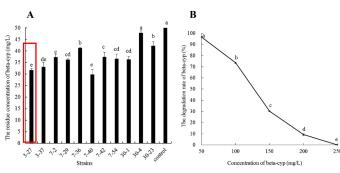
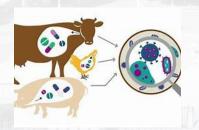


Table 1. Degradation rate (%) of beta-cyp in alfalfa silage with different dry matter contents during ensiling.

	Treatment ^b (35% DM)		Treatment ^b (43% DM)			P value ^d		
Dª	C	LP	С	LP	SEM ^c	T	DM	T×DM
3	22.9*	26.2*	21.3*	21.6*	0.005	0.147	0.007	0.227
7	28.0*	33.0*	21.8*	26.9*	0.005	< 0.001	< 0.001	0.46
14	26.2*	33.3*	17.2*	28.9*	0.003	< 0.001	< 0.001	0.001
30	33.3*	41.3*	33.1*	37.4*	0.003	< 0.001	0.008	0.014
60	54.0*	57.2*	39.7*	52.2*	0.004	< 0.001	< 0.001	< 0.001

- A novel beta-cypermethrin-degrading *L. pentosus* **3-27** was screened from silage.
- The Lp 3-27 degraded 96% of beta-cyp (50 mg/L) in MSM medium.
- A higher beta-cyp degradation was observed in silage with 35% DM versus 43% DM.



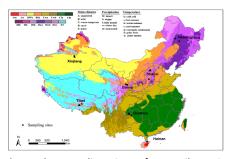
Bio-control of antibiotic-resistant genes (ARGs) in silage

- Antibiotic resistance is one of the greatest public health challenges worldwide.
- ☐ Annual mortality exceeding 10 million from antimicrobial resistance (Anon EU, 2010)
- □ Recently, ARGs have been continuously found in **antibiotic-resistant microbes** isolated from dairy products (Verónica et al., 2015).
- In addition, ARGs such as Tetracycline, Streptomycin, β -lactam resistant genes, were also found in beef (Yu et al., 2017).
- Silage as a fermented and major feed source for ruminants, it is essential to investigate the dissemination of ARGs in silage, and to mitigate the occurrence and spread of ARGs in silage.

ARGs

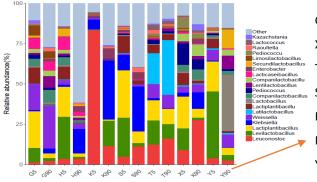
Silage microbes with ARGs

ARGs



Characteristics of ARGs in corn silage from various climate zones in China

Xu et al., Environmental Pollution, 2023



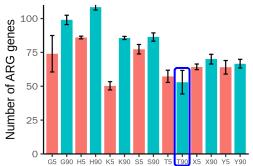

Fig. 1 The sampling sites of corn silages in typical climate zones of China

Fig. 3 ARGs composition of corn silage fermented for 5 and 90 days

Fig. 2 Bacterial community composition of corn silage fermented for 5 and 90 days.

Fig. 4 ARGs numbers in corn silage fermented for 5 and 90 days

- G, Guizhou province
- X, Xinjiang province;
- T, Tibet province;
- S, Shanxi province
- H, Heilongjiang province
- K, Hainan province
- Y, Gansu province.

- Most of the bacteria responsible for the silage fermentation were the hosts to the ARGs
- There were 5 high-risk ARGs (tetM, bacA, SHV-1, dfrA17, and QnrS1) in silage from different climate zones, and the tetM (Tetracycline resistant gene) was the most prevalent high-risk ARG.

☐ Effects of storage temperatures and inoculants on transmission of high-risk ARGs in corn silage

(Xu et al., Science of Total Environment, 2024)

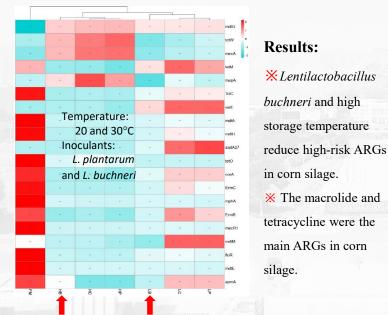


Fig.1 Heatmap of high-risk ARGs in corn silage

FM, fresh corn; LC, control silage at 20°C; LP, *L. plantarum* silage at 20°C □ LB, silage inoculated with *L. buchneri* silage at 20°C; HC, control at 30°C; HL, *L. plantarum* at 30°C; HB, *L. buchneri* at 30°C.

☐ Effects of inoculants and dry matter on transmission of high-risk ARGs in corn silage (Zhang et al., Journal of Hazardous Materials, 2024)

ISC

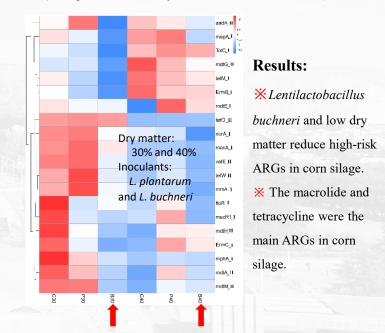


Fig.2 Heatmap of high-risk ARGs in corn silage

C30, control with 30% DM; P30, *L. plantarum* silage with 30% DM; B30, *L. buchneri* silage with 30% DM; C40, control with 40% DM; P40, *L. plantarum* silage with 40% DM, B40, *L. buchneri* silage with 40% DM.

□ Effects of inoculants on transmission of ARGs in alfalfa silage

(Zhang et al., Journal of Hazardous Materials, 2023)

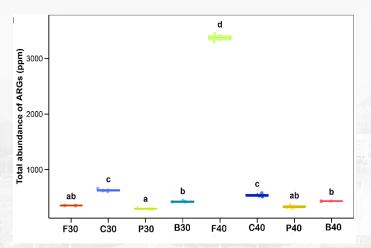


Fig. 1. ARGs abundances in LAB inoculated alfalfa silage F, fresh alfalfa; C, control, P, *L. plantarum*; B, *L.buchneri*; 30, 30%DM;40, 40% DM.

- Both L. plantarum and L. buchneri reduced the ARGs abundance in alfalfa silage;
- L. plantarum had a better effect than L. buchneri.

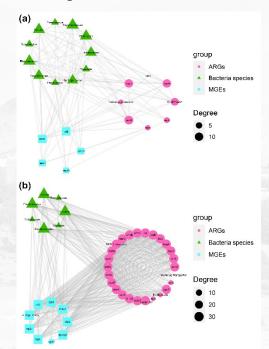


Fig. 2. Network analysis reveals the co-occurrence relationships among antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and microbes (at the genus level) in alfalfa silage (a) 30% DM and (b) 40% DM.

Conclusion

- > There are numerous opportunities in manipulation of silage fermentation for animal health
- 1 □ Developing LAB with effective decontamination ability to suppress pollutants in silage
- 2□ Developing specific probiotic LAB to prepare probiotic silage with antioxidant, antiinflammatory, antimicrobial, immune stimulative and other health beneficial profiles.
- > There are great potentials to prevent and alleviate some clinical diseases of animals through feeding probiotic silages
- > There are infinite possibilities in manipulation of silage fermentation through novel LAB when connecting silage to:
 - 1) Environmental sustainability
- 2) Animal performance, animal health and welfare, animal foods quality and safety, and even human being.

THANK YOU FOR YOUR ATTETNTION